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A clustering algorithm is proposed for multivariate time series data sampled from cyclic 
systems.  It applies Principal Component Analysis (PCA) in an unsupervised fashion to 
identify a number of recurring system states from historical data sets; times of 
occurrence for each identified state are labelled. A cycle of period T samples is known 
to exist for at least some system variables.  This “confounding cycle” represents 
unimportant variability that can be statistically separated from variability at other, 
important time scales having events of interest.  A moving window is used to generate 
N subsets (or batches) of time series, which are then subjected to cluster analysis.  The 
window length L, the number of samples in each batch, determines the time scale at 
which patterns are isolated.  One case study focuses on regimes of normal and faulty 
operation for a pilot scale chemical process. Another case study is aimed at determining 
meteorological patterns affecting air quality in northern California. 
 
1. Introduction 
Clustering algorithms (Everitt, 1993) belong to a class of unsupervised, multivariate 
statistical analysis techniques used to determine homogeneous groups of observations 
existing in a heterogeneous data set.  Ultimately, a clustering algorithm seeks to 
partition a set of N observations into k groups (called “clusters”) based on 
measurements for p variables sampled for each observation.  When applied to time 
series data sets, in which the N observations are recorded serially in time at a uniform 
sample rate for some physical system, the identified clusters can correspond to the 
system states or regimes.  The sequence of such cluster labels describes the temporal 
evolution of the system through a discrete set of states.  Continuous periods in time 
bearing the same cluster label are associated with persistent realizations of some system 
state, while points in time at which the cluster labels change indicate transitions between 
system states. 
 
The proposed clustering method is intended for data sets exhibiting two important 
features.  First is the inherently autocorrelated nature of the measurements, which may 
represent events occurring at multiple time scales. Time scales can range from brief 
disturbances affecting only a single sample to steady states that may persist for long 
periods of time. The second is a cyclic component superimposed on at least one of the 
process variables.   Such a “confounding cycle” can be caused by the presence of a 
periodic disturbance or other input affecting the system.  The cycle is known to affect 
the process, and represents undesired variability that should not be reflected in the 
ultimate labelling of the N observations among a set of k identified process states. 



 
Traditional clustering algorithms, such as the k-means algorithm, are intended for 
independent observations; this assumption is violated for time series data sets.  Such 
algorithms group observations based on mean squared deviations in the p-dimensional 
measurement space, yielding clusters that are distinguished by the levels of their means.  
Dynamic events do not have constant mean, and thus cannot be properly detected by 
traditional clustering algorithms. Additionally, cyclic variables do not have a truly 
constant mean, but rather oscillate through peaks and valleys.  Thus, traditional 
clustering algorithms tend to produce “periodically biased” results when applied to 
cyclic time series measurements. Such periodically biased cluster labels capture the 
phase of the confounding cycle, tracking the oscillations for the cyclic variables.  This 
problem becomes severe for identifying any steady states existing in the data set, as the 
cyclic component represents the dominant source of variability for these system states.  
Because of the inappropriate nature of their statistical models, traditional clustering 
algorithms are not useful for clustering autocorrelated and/or cyclic data. 
 
Here, a clustering algorithm for autocorrelated and cyclic data sets is presented in which 
the data are modelled using Principal Component Analysis (PCA, Jackson, 1991).  
Though PCA is technically not appropriate for time series data, it is frequently applied 
to time series measurements with success.  PCA is a linear model based on the 
correlation structure of the observed data and is also capable of modelling linear 
trajectories of the variables in time.  In the event that the system dynamics are too 
complicated to be adequately modelled by PCA, an extension known as Dynamic PCA 
(Ku et al., 1995) can be implemented by simply concatenating temporally lagged 
variables to the observed data matrix. 
 
To implement the cluster analysis, a moving window is first applied to divide the time 
series data set into N batches of equal length L samples.   The clustering algorithm then 
partitions these N batches into k clusters.  The moving window length L determines the 
time scale for any detected patterns.  By setting L equal to the period of the confounding 
cycle T, any periodic biases can be averaged out from the cluster labels.  Unfortunately, 
this window length will also average out high frequency events of shorter duration than 
the confounding cycle. Thus, setting L = T reveals any low frequency states existing in 
the time series.  A separate analysis using smaller L can then reveal any high frequency 
events having time scales of less than T samples. 
 
The proposed clustering method is applied in two case studies.  The first considers 
various states for a pilot scale chemical plant, and the second investigates 
meteorological patterns affecting air quality in northern California. 
 
2. Theory 
2.1 (Dynamic) Principal Component Analysis 
PCA is performed for a rank p data matrix X by Singular Value Decomposition (SVD) 
to yield a diagonal matrix S of ordered singular values si and corresponding right 
singular vectors vi appearing in the columns of V. 



 
X = USVT                 (1) 
 
The q < p singular vectors corresponding to the largest singular values are stacked into 
the PCA loading matrix P.  The PCA model order q is taken as the smallest integer 
capturing  some desired threshold level of variability in data set X (e.g. 95%). 
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The scalar error metric Q quantifies the degree of model fit upon projection of data 
matrix X onto PCA model P, where I is an identity matrix. 
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In the event that the autocorrelated data are not adequately modelled using PCA, an 
extension known as Dynamic PCA (Ku et al., 1995) can be applied.  Data matrices   
X(t-m) having each element lagged by m sampling intervals are concatenated to form a 
single matrix X of rank (M+1)p.  M is the number of lags and is estimated using the 
Partial Autocorrelation Function (PACF) as described by Shumway and Stoffer (2000). 
 
X = [X(t), X(t-1), …, X(t-M)]               (4) 
 
2.2 Clustering Algorithm 
Prior to executing the clustering algorithm, a moving window is used to divide the 
continuous, time series data set into N batches Xi labelled serially for index i ranging 1 
to N.  The moving window is defined by the window length of L samples and spacing 
between adjacent windows of R samples.  These N batches Xi are then input to the 
clustering algorithm to generate N homogenous groups of time series data. 
 
The non-hierarchical clustering algorithm begins by specifying k, the number of 
clusters.  A single batch Xi is randomly selected to seed each cluster.  The clustering 
algorithm is iterative in nature and seeks to optimize the configuration of the N batches 
among k clusters.  For each iteration, all batches assigned to each cluster r are collected 
to estimate the PCA models Pr as shown using Equation (1).  Then, each individual 
batch Xi is projected into each PCA model Pr to determine loss rates Q(i,r).  The 
iteration is completed when each batch Xi is reassigned to the cluster r producing the 
smallest modelling error Q(i,r).  The iterations are continued until no reassignments are 
indicated— each batch is assigned to the cluster whose PCA model produces the least 
error. 
 
The method of Beaver and Palazoglu (2006) is applied to compute an aggregated cluster 
solution based on a randomly initialised ensemble of solutions generated by the above 



clustering algorithm.  This method avoids having the user specify the parameter k in 
advance, and generates a reproducible and robust partitioning of the observations.  
Ultimately, each batch of L observations is assigned to a single cluster.  As the batches 
may be overlapping in time, however, multiple cluster assignments may exist for a 
given sampling time.  Final, fractional cluster assignments for each sample are 
calculated as the fractional representation of sample i in cluster r. 
 
2.3 Parameterization of the Moving Window to Identify Events of Interest 
The window length L is specified in advance by the user to determine the temporal 
properties of the cluster solution.  Different choices for L will identify events occurring 
at different time scales.  The spacing between temporally adjacent batches R is a second 
parameter that defines the moving window.  Parameter R is used to define the window 
density LR-1, or number of batches in which each sample is contained.  The window 
density determines the temporal resolution of the cluster solution— larger window 
densities allow increased temporal resolution at which the transitions points between 
system states occur.  The cluster analysis is performed for two independent and 
complimentary parameterizations of the moving window to reveal both the high and 
low frequency content of the time series data. 
 
First, the low frequency content of the historical data is isolated by setting L = nT, 
where T is the confounding cycle period and n is a positive integer.  This window length 
ensures each batch contains exactly n observations from each phase of the confounding 
cycle, thereby averaging out any periodic biases from appearing in the cluster labels.  
Due to this relatively long window length, high frequency events of short duration also 
tend to be averaged out of the cluster labels.  Thus, this choice of window 
parameterisation indicates low frequency events of at least nT samples in duration. 
Because of the inherent loss of temporal resolution for the cluster transition points 
occurring with such large window lengths, the window spacing R is chosen to produce a 
small integer window density to maximize computational efficiency. 
 
If desired, a second, independent cluster analysis can be performed to isolate any high 
frequency events existing in the historical data.  A window spacing L < T/2 is selected 
to capture events of shorter duration than the cycle period T.  Using such a window 
length causes the previously identified low frequency events to appear with periodic 
biases in the sequence of cluster labels.  The true high frequency states can readily be 
identified upon corroboration between the low and high frequency cluster analyses.  The 
window spacing R should be set to 1 to maximize the temporal resolution for the high 
frequency analysis.   
 
3. Case Study: Pilot Plant Monitoring 
The clustering algorithm is applied to pilot plant data (Joe et al., 2004).  Feed is heated 
with steam before entering a jacketed, water cooled, reactor. Cyclic variability for 
several process variables exists due to periodic disturbances in the steam utility.  Nine 
variables are monitored for 400 observations.  The cycle period is 21 samples based on 
visual inspection of the data.  The plant is operated through 4 sequential regimes of 100 



observations each: normal operation (samples 1-100), feed flow rate increase (101-200), 
and 2 different faults (201-300 and 301-400).  Additionally, several “spike faults” exist 
in which the coolant temperature is reduced for a single sample in duration (92, 100, 
292, 300, 392, and 400).  The pilot plant data are shown in Figure 1. 
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Figure 1.  Time series for 9 pilot plant variables.  Dashed vertical lines denote regimes. 
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.Figure 2.  Fractional cluster assignments for 400 observations. 
 
The large mean shifts in the data can be detected using PCA, and Dynamic PCA is not 
necessary for this application.  Low frequency analysis is performed using L = 21 
samples and R = 7 samples. Each of the 4 operating regimes are identified.  Next, the 
high frequency analysis is performed using widow length of 4 samples and window 
spacing of 1 sample.  The 4 previously identified operating regimes appear in the 
solution with periodic biases.  True high frequency events are identified as the 
transitions between the low frequency states and the spike faults.  The cluster labels are 
shown in Figure 2.  Clusters #2, #5, #3, and #1 capture the four sequential process 
regimes, while #4 isolates the spike faults. 
 

4. Case Study: Meteorological Patterns Affecting Air Quality 
The clustering algorithm is applied to hourly wind field measurements obtained from a 
network of 12 monitoring stations positioned throughout the San Francisco Bay Area of 
California.  Wind speed and direction from each meteorological station are transformed 



into northerly and easterly vector components and treated as individual variables, for a 
total of 24 variables.  A confounding cycle of period 24 hours exists in the data set due 
to the inherent diurnal (daily) cycle inherent in most environmental systems.   
 
A window length of L = 48 hours is used to both suppress diurnal biases in the cluster 
labels and identify events occurring at the synoptic time scale— meteorological states 
persisting for multiple, consecutive days on each realization.  Due to the strong 
autocorrelation present in the hourly wind observations, the clustering algorithm is 
implemented using Dynamic PCA with M = 2 lags.  High frequency events (those 
persisting < 24 hrs) are not investigated for this data set because ground-level ozone 
(photochemical smog) levels are known to be strongly influenced by synoptic 
meteorological variability for the Bay Area.  Each day from the study period of 1 June 
through 30 September of the years 1996-2004 is labelled using 4 identified cluster 
patterns.  Days are assigned to clusters based on majority membership for their 24 
hourly observations (Figure 3).  The clusters are distinguished in terms of dispersion 
patterns and ozone levels.  Clusters #1 and #4 capture meteorological conditions 
favoring significantly poorer air quality than #2 or #3. 
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Figure 3.  Y-position of asterisk indicates cluster label for each day from 8 summers. 
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